If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+x^2=18
We move all terms to the left:
7x+x^2-(18)=0
a = 1; b = 7; c = -18;
Δ = b2-4ac
Δ = 72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-11}{2*1}=\frac{-18}{2} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+11}{2*1}=\frac{4}{2} =2 $
| 7x+3x+2x=1764 | | (2x-1)÷x^2-4=1 | | -5y-41=-1 | | 2(4x-2)=-4+8x | | 19-2(3x-1)/5=x=2 | | Y=-4x-22 | | 6x-1/2x+3=5/3 | | x-1/5=2/3 | | 8x^2-3x+15=0 | | -9=(x-2) | | x+15=288 | | 2(2n+5=12 | | 4(5x-7)-3=20x-31 | | 1/3p-5/6=1/2+2p | | x.2=45 | | 4y/5=120 | | xx2=45 | | 9x+4=5(2x-1)-4 | | 6x.5-2x.5=20 | | 6(x-3)-7x=55 | | 1/2p-5/6=1/2+2p | | 8x+15=-41 | | -2(1-2x)-(1-2x)=-x2 | | 49t(2)-14t+1=0 | | x-(-91)=52 | | 4y+20-y=16 | | 9x+42=-58 | | 0,27x+8,11=1,08(x-2)-1,96x | | 6x.5+3=2x.5+23 | | 540=b+3/2b+(b+45)+(2b+-90)+90 | | (x+1)(x+(2/3))=0 | | 4h^2-60h+16=0 |